Connectomics in psychiatric research: advances and applications
نویسندگان
چکیده
Psychiatric disorders disturb higher cognitive functions and severely compromise human health. However, the pathophysiological mechanisms underlying psychiatric disorders are very complex, and understanding these mechanisms remains a great challenge. Currently, many psychiatric disorders are hypothesized to reflect "faulty wiring" or aberrant connectivity in the brains. Imaging connectomics is arising as a promising methodological framework for describing the structural and functional connectivity patterns of the human brain. Recently, alterations of brain networks in the connectome have been reported in various psychiatric disorders, and these alterations may provide biomarkers for disease diagnosis and prognosis for the evaluation of treatment efficacy. Here, we summarize the current achievements in both the structural and functional connectomes in several major psychiatric disorders (eg, schizophrenia, attention-deficit/hyperactivity disorder, and autism) based on multi-modal neuroimaging data. We highlight the current progress in the identification of these alterations and the hypotheses concerning the aberrant brain networks in individuals with psychiatric disorders and discuss the research questions that might contribute to a further mechanistic understanding of these disorders from a connectomic perspective.
منابع مشابه
Clinical Concepts Emerging from fMRI Functional Connectomics
Recent advances in connectomics have led to a synthesis of perspectives regarding the brain's functional organization that reconciles classical concepts of localized specialization with an appreciation for properties that emerge from interactions across distributed functional networks. This provides a more comprehensive framework for understanding neural mechanisms of normal cognition and disea...
متن کاملDiffusion spectrum imaging connectomics: a biomarker for staging in psychotic disorders
Alessandra Griffa, Philipp S Baumann, Carina Ferrari, Tanja Eric, Philippe Conus, Kim Q Do, Jean-Philippe Thiran, and Patric Hagmann Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland, Service of General Psychiatry and Center ...
متن کاملNeural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features
Connectomics is becoming an increasingly popular area of research. With the recent advances in optical imaging of the neural activity tens of thousands of neurons can be monitored simultaneously. In this paper we present a method of incorporating topological knowledge inside data representation for Random Forest classifier in order to reconstruct the neural connections from patterns of their ac...
متن کاملHuman connectomics.
Recent advances in non-invasive neuroimaging have enabled the measurement of connections between distant regions in the living human brain, thus opening up a new field of research: Human connectomics. Different imaging modalities allow the mapping of structural connections (axonal fibre tracts) as well as functional connections (correlations in time series), and individual variations in these c...
متن کاملFusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics
Electron microscopic connectomics is an ambitious research direction with the goal of studying comprehensive brain connectivity maps by using high-throughput, nanoscale microscopy. One of the main challenges in connectomics research is developing scalable image analysis algorithms that require minimal user intervention. Recently, deep learning has drawn much attention in computer vision because...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015